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In this article the effects of external and internal noise, finite sample size, and
transition estimation errors are included in an analysis of the signal-to-noise ratio
estimator used in the symbol synchronizer assembly. Expressions for the estimator
mean and variance are developed, from which their dependence on the above
effects are determined. The results of this study show that the estimator mean
depends almost entirely on the external and internal signal-to-noise ratios while
the estimator variance depends almost exclusively on the sample size.

I. Introduction

The statistics of the signal-to-noise ratio (SNR) estima-
tion algorithm have been the target of several noteworthy
analyses over the past eight years. The first of these was
performed by Gilchriest (Ref. 1) in 1964 and resulted in an
expression for the probability density function for the
estimator. Gilchriest, however, did not take into considera-
tion the tails of the noise distribution, which rendered his
result valid for only high signal-to-noise ratios. Two years
later Boyd (Refs. 2 and 3) extended Gilchriest’s result to
a more computable expression and included some addi-
tional error sources, but he still retained Gilchriest’s basic
assumption.

In 1967 Layland (Ref. 4) derived the expression for the
mean SNR estimate with the effects of the noise distribu-
tion tails included. From this expression he found a sig-
nificant bias in the estimator at low signal-to-noise ratios
from which a set of correction expressions were deter-
mined. Layland’s result, however, disregarded the effects
of symbol transition estimation errors and was only true
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asymptotically with the sample size. Layland later revised
his result (Ref. 5) to include the effects of transition esti-
mation errors, but his resulting expressions (even when a
uniform error distribution was assumed) required numeri-
cal integration for evaluation.

With this history in mind we shall develop in this article
the expressions for the mean and variance of the SNR
estimator used in conjunction with the Symbol Synchro-
nizer Assembly (SSA) with the effects of (1) input noise
distribution tails, (2) finite sample size, (3) gaussian dis-
tributed transition estimation errors, (4) quantization
errors, and (5) internal equipment noise all included. Upon
evaluation of these equations we will find that the estima-
tor mean depends heavily on the input noise and internally
generated noise but is relatively insensitive to changes in
the sample size. The variance of the estimator, on the other
hand, will be found to be strongly dependent on the
sample size and relatively independent of the noise sources.

Before proceeding it is necessary to make a comment
regarding notation. In this analysis extensive use of the
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error function and its complement is necessary. However,
one often finds in the literature two definitions of the error
function. For this reason the error function recognized by
the National Bureau of Standards will be denoted by erf
and is defined by

r~,

erf (x) = 72__/”6_,2 dt
TJo

The other error function (sometimes called the Q-function)
will not contain the tilde and is defined by

~ 1

&t (x) = — / " eurdy

The associated complementary error functions will simi-
larly be denoted.

Il. Mean and Variance of the SNR Estimator

Consider the model of the SSA and estimator algorithm
shown in Fig. 1. The input data signal V (?) is a binary
signal taking on ecither of the values +V or —V in the
intervals # to #.., kK = 1,2, - - -. This signal is corrupted
by additive white gaussian noise n (t) having a zero mean
and two-sided spectral density No/2. The Symbol Tran-
sition Estimator uses this composite signal to estimate the
values of # and tx,,. Using these estimates (?k and ?;m) the
received signal is integrated over the expected symbol
duration. After removing the algebraic sign from the in-
tegral, the resulting quantity is quantized to produce the
random sequence yx. {yx} is assumed to be an independent
sequence.

Two noise sequences, the quantizer noise n, (k) and the
internal equipment noise nz (k) (produced from crosstalk,
computational inaccuracies, etc.), are then added to yx to
produce the sequence Z. It is assumed that n, (k) and
ng (k) are independent zero mean white gaussian se-
quences having variances ¢} and o, respectively. Finally,
Z; and its square are transferred to the SNR estimator
where the estimate R is produced.

Let us for the moment assume that the first four
moments of y;, are known. For notational simplicity, define
E{ys} = p and E {(yx — p)?} = o*. Then we know that

E{Z)} =p (1)
and

A
var {Zk} = g% + aé + o = cr% (2)
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Next, note that the SNR algorithm is the square of the
sample mean divided by twice the sample variance. Both
the sample mean and variance are random variables de-
pending on the statistics of Z. Then, if the sample size (N)
is large enough (N ==20 should suffice), we can use the
Central Limit Theorem to express the estimated SNR by

(p+Vokd)? 3)
2(o% + Vv y)

where ¢ and y are independent zero mean gaussian ran-
dom variables with unit variances, ¢% is the variance of
the sample mean given by

A
R =

o

o 4)

2|

and o2y is the variance of the sample variance. The vari-
ance of a sample variance is derived in Appendix A and
with the help of Egs. (1) and (2) can be expressed as

1 4 3
ofv =y E{y} — ~EWIety [E {y*}}*

2(2N —3 2
— N((N—l)) ot + (024—0%)(03‘}"012;4-202)

N-1
(5)

where y represents any of the yy’s.

Returning now to Eq. (3) and expanding the denomi-
nator in a geometric series gives

ﬁ: ‘LLZ (1+_—_'m%lg>2(l_—_|172§1]¢+_0i:]¢2_ .. )
e gz a

z

(6)

However, if the sample variance is a reasonably accurate
estimator for the variance, then YV ody/of <<1 so that
we can neglect the higher order terms, and

2 2 o 2
A (XY (=Yg %) @
LA M a7z (TZ

Now, by using the independence of ¢ and ¢, we have that
the mean SNR estimate is

E{ﬁ}=—é%g(l+A)(1+B) (8)
where
A= ©)
In
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I
B = o (10)
Similarly we find that the variance of the estimator is
given by

var (R} = 4—2\,21? (B(1+B)(1+ Ay
+2A(2+ A)(1 + By
+2AB(2 + A) (1 + 2B)) (11)

Equations (8) and (11) are the desired equations for the
mean and variance of R in terms of the expressions given
in Egs. (1), (2), (4), (5), (9), and (10). However, when all
of these equations are substituted into Egs. (8) and (11),
we find that the results depend only on N (the sample
size), o, of, and the first four moments of y. We will now
consider these quantities.

lll. The First Moment of y
Referring again to Fig. 1, we see that y; is given by

g = j /[V () +n(2)] dt ) (12)

We shall assume that %, differs from ¢, by an amount A,
which is zero mean gaussian random variable having a
variance of. Furthermore, if we assume that the transition
estimator loop is in lock and has a sufficiently narrow
bandwidth, then the duration of the symbol integration
will be the symbol period T (T = t,, — t;). Thus, we can
express Eq. (12) as

te+A+T

g = } [V () + n ()] dt (13)

tr+d

In order to evaluate the mean of y;, we must condition on
the random variable A. However, since the sign of A will
determine which symbols are integrated during the kth
estimated interval, we must also condition on A>0 or
A < 0. Thus, the expected value of y; can be expressed
as

E (y) = / " E (ye/a, A0} fada

+ /0 E {yx/A0,A <0} fadA (14)

o0

where fa is the probability density function of A and is
given by

hO=ygee| -]

Now by evaluating the symbol integrals under the appropriate errors () allows Eq. (14) to be expressed as

E{ys} = AwE{IVkT + (Vi — Vi) A + 1’| /A, 0} fada

+/° E{|ViT + (Var = V)& + /| /A, & < 0} fadr (16)

00

where n’ is a zero mean gaussian random variable having a variance N,T /2.

The conditional expectations in the integrands can be further simplified by noting that

E{g(Vi, Vi) /8,4=0} = 3 3 E {g(Vi, Vis1)/Vi, Vis, A, A=0} P {Vy, Vi/A, A= 0) (17)

Vi Vit

However, P {Vy, Vi, /A, =0} = P{V,Vy,,} since the transition estimates do not affect the value of the incoming
signal. Recalling now that the Vy’s are independent and equally likely to be +V or —V allows us to express Eq. (16) as

E{yk}=%\/?'[wZZE{

k Vi
1 |N,T °
0
N >
—00 Vi V-1
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24
sgn (Vi) V2R + sgn (Vi., — Vi) T V2R +n”

24
sgn (Vi) V2R + sgn (Vi — Vi) 7 V2R + n”

/ Vie Vi, A, A 0} fadA

/ Vi, Ve, A, A < 0} fada
(18)
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where R is the actual signal-to-noise ratio R = V?T/N,, n” is a unit normal random variable (1(0,1)) and sgn (x) is
defined by

+1, ifx>0
sgn(x) =¢ 0, ifx=0
-1, ifx <0

In Appendix B it is shown that if « is a unit normal random variable and « is a constant, then

E{|x+a|}=—v—2_2—;exp[—§]+aé?f<v%> (19)

Using this relationship the expectations in the integrands of Eq. (18) can be evaluated yielding

E (y) = %\/T/w Z {2 exp {— R l:sgn (Vi) + sgn (Vi — Vi) 2—?—]2}

Ve Vi+ V 2

+ VIR sgn (Vo) +sgn (Ve = Vi 5 | &t ( V| st (V) + sgn (Vs = V) ZTA])} foda

g [ o) e R

VZr
+V2R |:sgn (Vi) + sgn (Vs — Vi) 2%] ort ( \m[sgn (Vo) + sgn (Viy — Vi) gﬂ)} fada (20)

Now, by summing over the possible values of the Vi’s we find that the two integrands are equal and the above expres-
sion becomes

E{y) = \/T/{ exp[-—R]+V%exp[—ﬂ(l—2—?->2}+2m(;f(\/—ﬁ)
+ 2\/?7?(1 — —ﬁ—) é\r’f[ \/T(l - 2—A>]} fada (21)

By straightforward integration we obtain

— RTZ

N.T T .
E{yk} = 3 { ek eXP[SR +T2] rR—é;'f \[_R‘

Vo, T VEGRA T T

VB[R B T AR

A closed form for the last integral can be obtained through integration by parts but the first integral is not quite as easy
to evaluate. In Appendix C we prove the identity

[:gf(ﬁbx} o [- %] dx=eN<———“ 1) (23)

To
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Using these results we have

— RTZ
Emm}=VNJ{e*.+Tkm[&h%+P]+.Vﬁaﬂvm
oVr | 2Vx(BRAT+TH = 2

ﬁr\: 2 4Ro3 _ RT?
5 e’f( SRoi+T2)+ TV -8R + 17 P | ~ 8Roz + T° (24)

It is quite often more practical to express these functions in terms of the variance of the SSA loop phase error (o3) rather
than the variance of the timing error (o3). Since

T2 o
4

(25)

oX

and if we simplify notation by using the substitution

D=VIRF T @)

then Eq. (24) becomes

R
Elyd = W{ 26\_;; + P EXZJ;\;?F] + V;H[?d(VTi) + ?r’f( T DR)]} (27)

Equation (27) is the desired expression for the first moment of y. To verify this equation, note that as o — 0, then D
goes to =. Making this substitution yields

ln ) = VR {{= + VRS (VR
=VN,T {\e/—; +VR[1~2erfc (\lz_R)]}

which is precisely Layland’s result (Ref. 4).

As a further comment, Anderson and Hurd (Ref. 6) have shown that the SSA loop phase error is given by

w2 orty

2Re¥f (VR)

(28)

o

where .t is the fractional loop bandwidth. Thus, if we know the value of .fs, then Eq. (27) depends only on the actual
signal-to-noise ratio R and the noise factor Y N,T. However, in the SNR algorithm the factors containing YV N,T all
cancel, leaving the resulting expressions functions of only R.

IV. The Second Moment of y

Determination of the second moment is much simpler than the first since the absolute value is absorbed by the square.

We have, therefore,
£ = [ 2
0

+/w E{MMM [V(t)+n(t)]dt‘2/A,A<0}fAdA (29)

k+A

/tmm [V (¢) + n ()] dt } 2/A,Aéo}fAdA

k+A
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which becomes

E{yt) = / Z [ViT + (Vi — Vi) Al fadas

Vi1

[}
N,T
+—41—/ z [ViT + (Vis — Vi) Al fada + ==
-0 Vi

Vi

Again we find that the integrands are the same so that

2

E {42} = / " (@Var — 9VATA + VAT fada + 2L
N.T

= V*T? + 2V?eh + —5

Now, if we use the relationships given in Eq. (25) and the definition of R, we obtain

2
Eq=NT(R+32 4 1
o0t | 2

Again we see that, when ¢} goes to zero, Eq. (32) reduces to Layland’s result (Ref. 4).

V. The Third Moment of y

Using the same procedure as in Section III, we can express the third moment of y; by

E{y£}=%(ﬁ>a/omZ:;E{
S [ ZE el e vy o

In Appendix D we use the properties of the characteristic function to prove the identity

E{|x+ a]?} :V_7(Ta;+_2)exp[—%2] +a(a2+3)é;)f<-\/i§->

whenever « is a unit normal random variable (37 (0, 1)) and « is a constant. With this result Eq. (33) becomes

E{yp) = %(N;Tyé/w ZZ {(23 [sgn (Vi) + sgn (Vi — Vi) 2%]1 2)%

X exp {—R [sgn (Vi) + sgn (Vi — Vi) %]2}

A
I:sgn (Vi) + sgn (Vi — Vi) 2?] V2R + n”

3/A,Aé0}fAdA

3/ A,A<0}fAdA

+ (23 [sgn (Vi) + sgn (Vi — Vi) %_i‘_:lz_*_ 3) (v‘zﬁ[sgn (Vi) + sgn (Viea = Vi) %AD

X erf (ﬁ [sgn (Vi) + sgn (Vi — Vi) %])} fada

(31)

(32)

(33)

(34)
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* %<¥>%ﬁ° ZVZ {(23 [sgn (Vi) + sgn (Vi — Vi) 2%]? 2) =

HE

+ (2R [sgn (Vi) + sgn (Vi — Vi) %é]z—}- 3> <\/2_R[sgn (Vi) + sgn (Vs — Vi) %])

x ot (ﬁ [sgn (Vi) + sgn (Vs — Vi) %J )} fada (35)
As before, by carrying out the summations, we find that the integrands are the same, producing
pwy =) e + 9V B G vy
R[4 )l a2
+ Vﬁ[:[ﬂ + %— %(23 + 1A+ 12113?2 - 8%]&?[\/7{‘( 1-— Z—TA>:IfAdA} (36)

The first integral of this expression can be evaluated using straightforward techniques. The second integral involves
error functions and is of the form

3

> [ ot va(i- 2]

n=0

For n = 0, we can use the result of Appendix C. For n = 1, 2,3, we can with some effort use integration by parts. After
performing these operations and using Egs. (25) and (26), we finally arrive at

(R+1) (2R+3)VR ~
= % &
E {4} = (N,T) { V¢ + 1 erf (VR)
D Rx?
1 3D*\~ (xVRY P ,;Dz ( E) o
+?V_E<R+2n2>erf( D >+ EWEYam R+—
VI. The Fourth Moment ofy which, after using the previously used substitutions,
The fourth moment of y; is found by the same proce-  becomes
dure used to determine the second moment. After condi-
tioning on A and evaluating the integrands one obtains E{y;} =
Ro3 1 3R%s?
. aNaT N%T“’[RZ+SR+%+3 ;’¢<R+§>+Tfﬂ’-}
4] — 0 K ka
E {y$} [w {V4T‘* + 3V*TN, + 4 (39)
— 2V2T2 (2V2T + 3N,) A
+ 6V2T (2V2T + N,) A VIL. Quantizing and Internal Noise Variances

In this section we shall consider both the quantizing

— 16V*TA® + 8V4A4} fada (38) error variance and the internal equipment noise variance.
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These are considered together since in practice one would
measure the effect of both simultaneously.

The quantizing errors result from the SSA analog-to-
digital converters, which are 12-bit converters having a
dynamic range of =5 volts. The least-significant digit,
therefore, corresponds to =2.44 mV. However, the nomi-
nal integrated symbol voltage is 1.1 volts. Thus, if we let
8, represent the quantizing step size, then

vT

=150

(40)

Now, from Panter (Ref. 7), we know that for equal quan-
tizing intervals the variance of the quantizing error is
given by

0 = 12 (41)
Therefore, the desired quantizing error variance is
N,TR
2 — 0"
77 243 X 10° (42)

For the internal noise variance, let us assume that the
internal noise causes the equipment to have an internal
signal-to-noise ratio of y dB. Also recall that the signal
voltage (after the integrator and quantizer) is VT. Then,
if we let N, represent the internal noise one-sided spec-
tral density, then

~

N, = V27 (10-7/) (43)

However, the desired variance is the two-sided noise den-
sity, so that

N, 1
5 = g NTR(1077%) (44)

o%

VIil. Evaluation Results

A computer program was written to evaluate the mean
(Eq. 8) and the variance (Eq. 11) of the SNR estimator
using the appropriate substitutions from Section II, the
expressions for the first four moments (Sections 1I1-VI),
and the equations for the internal error variances. The
program was designed to compute the mean and variance
over the range of input SNRs (R) from —7 dB to +42dB
for specified values of sample size (N), fractional loop
bandwidth (w.ts), and equipment SNR (y). By holding any
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two of these parameters constant, the dependence on the
third quantity could be determined.

When the mean of the estimator was evaluated, it was
found to depend heavily on both the input and internal
signal-to-noise ratios. At low input SNRs, the estimator
behaved essentially as predicted by Layland. However,
as the input SNR was raised, the estimator became limited
by the internal SNR and asymptotically approached that
internal quantity. This effect is illustrated in Fig. 2.

The dependence of the mean on the sample size or the
loop bandwidth, however, was found to be much less pro-
nounced. As the sample size was varied, the estimator
mean was found to be virtually insensitive to these varia-
tions except at extremely low input SNRs. When the frac-
tional loop bandwidth was varied, no significant change
in the mean was detected until the bandwidth was made
much larger than the values presently available in the SSA.

These effects are illustrated in Figs. 3 and 4. Figure 3
shows the manner in which the mean approaches Lay-
land’s asymptotic value of —0.363 dB as the sample size
increases and the input SNR is fixed at —7 dB. Figure 4
illustrates the decrease in the estimator mean as the frac-
tional loop bandwidth is increased.

Unlike the mean, the estimator variance was found to
depend quite heavily on the sample size and was essen-
tially independent of variations in the signal-to-noise ratio
or loop bandwidth. Figure 5 illustrates the dependence of
the 1-o estimation error on the sample size. In Figure 6 we
see the dependence of the 1-o error on the input SNR.
Note that as the input SNR varies over five orders of mag-
nitude, the 1-o error varies only about 30%.

IX. Conclusions

In this article the effects of input and internal noise,
transition estimation errors, and finite sample size were
considered to derive expressions for the mean and vari-
ance of the SNR estimation algorithm of the SSA. These
quantities were found to depend on the first four moments
of the absolute symbol integrals which in turn were de-
rived. When these expressions were evaluated, we found
that the estimator mean depended heavily on the input
and internal signal-to-noise ratios, but was virtually insen-
sitive to changes in the sample size or fractional loop
bandwidth. The estimator variance, on the other hand,
was found to be essentially independent of the signal-to-
noise ratios and the loop bandwidths and to vary appre-
ciably only with changes in the sample size.
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Appendix A

The Variance of a Sample Variance

Assume we are given a sequence of random variables
{y:}, which are taken independently from a stationary
random process having some arbitrary probability distri-
bution. Assume also that the first four moments of y; are
finite and that the mean and variance of y; are denoted
w and ¢, respectively. We form the unbiased variance
estimator (W) defined by

(A-1)

: N
1 1 N 2
K =), (v-%Zw)

where N is the number of samples (N = 2). We desire to
determine the variance of W.

First we note that since W is an unbiased estimator
E{W)} =¢* (A-2)

Now, let us consider

1 X 1 X 272
E{W?} = E{[N — El(yi - ﬁg yj) :I } (A-3)
If we expand the inner square, we have
1 2 N 2 2 N N 2
Eov)=(5=y) 2{(30) -v 2 0(2)

e (2e)}

Now, by expanding the summations and using the inde-
pendence of the y/’s, the first expectation becomes

E{(E ’”)2} =NE{y'} + N(N — 1) [E {y*}]*
(A-5)

where y corresponds to any one of the samples. Likewise,
the second expectation becomes

E {2 i (j v )}= NE {y*} + 2N (N — ) E (5°)
+N(N - 1) [E ()]
NN —1)(N — 9 E {7}

(A-6)
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The third expectation is somewhat more complex. How-
ever, by considering the fourth power of the summation as
the square of the summations squared, we can decompose
this expectation into the previously evaluated expectation
plus an expectation involving the cross-product terms. The
resulting expression is

E{(z yi) }= NE {y*} + AN (N — 1) E ("}
+ 3N (N — 1) [E (5]
+ 6N (N — 1) (N — 2) E {4} u?

+NN-1)(N—2)(N—3)u* (AT

Combining these results and using the definition of the
variance yields

E(We) = E;?'*} _4E {Zgw N 3[E1£7y2}]2
(N —2)(N — 3) o*
N(N—1)

+ (A-8)

Finally, we have that the variance of the sample variance
is given by

var (W) = T E {4} — = E {4") u

2(2N — 3) ¢*
N(N-1)

(A-9)

o () —

In deriving Eq. (A-9), no properties of the probability
distribution of y were used. Consequently, the result will
remain valid for any distribution (symmetrical or not) pro-
vided that the samples are taken independently.

One additional simplification of Eq. (A-9) can be ob-
tained if one is willing to compute centralized moments
instead of ordinary moments. This can be accomplished
by making the substitution y = x + p, where x is a zero
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mean random variable with the appropriate distribution.
After substitution and simplification, one obtains

var (W) =+ E () — WUEJT__—?’)I—) o (A10)
or equivalently
var (W) = EAly — ) — gy @ (4100

As an example of the use of this result let us assume
that y is a zero mean gaussian random variable having a
variance o?. It is a well-known result that for this case the
sample variance given by Eq. (A-1) is an & -square dis-
tributed random variable with (N — 1) degrees of free-
dom. Since

E{(y — w*} = E{y'} = 3o* (A-11)
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then we have from Eq. (A-10a)

var {W} = NQ_' 1 o* (A-12)
which is precisely the variance of the associated £(-square
distribution (Ref. 8).

Finally, for the sake of completeness, we should verify
that our result (Eq. A-9 or A-10) is indeed a candidate
solution for a variance (i.e., it produces a nonnegative
variance). This can be easily verified by noting from
Eq. (A-10) that

Nvar {W}=E {x*} — ¢* (A-13)
However, the right-hand side of expression (A-13) is by
definition the variance of A = x2. Therefore,

var (W}=0 (A-14)
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Appendix B
Evaluation of E {|x+a|}

In this appendix we desire to establish the identity
2

E{|x+ a|} =V—27—;expl:—£2-:| +ag;f<va—-§) (B-1)

whenever x is a unit normal (1 (0,1)) random variable
and « is a constant. To establish this result, let

y=|z| (B-2)
where z = x -+ a. The probability density function for z
is then
= ew| S5 @9
From Papoulis (Ref. 9) the density function for y is
fe(y) = [f2(4) + f2(=9)1U (v) (B-4)

where U (y) is the unit step function. Then, the expected
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value of y is expressed by

o[- 252
vlz_”fyexp[—ﬁ—’;—‘”—z]dy (85)

After a change of variables and integrating, we obtain

E{y) =

-+

a2

2
\fzweXp[ 2

E {y} = ] + aerf (a) — aerfe (a) (B-6)

And, finally, with a trivial identity for error functions,
we have

E{y} =E{|x +«|}

sz_w exp [— %] + aert (%) (B-7)

which is the desired result.
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Appendix C

Evaluation of / “&¥ (a + bx)

Consider the integral

x2
o w[£]
I=/ erf (a + bx) 5 dx

0 770'2

(C-1)

By changing to the nonstandard error function, Eq. (C-1)
can be expressed as

2

x2
o exp[_i;]
I=1—2/ erfc(@V2+bV2x)—L—="d gy

- 7,‘,0_2

(C-2)

Now, for notational simplicity, let I =1 —2I', ¢’ = a{ 2
and b’ = b\ 2. Then, using the definition of the comple-
mentary error function, we have

yo 1 o[ _w X
r= = /_w /;,+blzexp|: ! 202]dudx (C-3)

This expression is a double integration of the exponential
function over the (x,u) plane such that x varies over the
entire real line and u is restricted to be above the line
v = a’ + b’x as shown in Fig. C-1. This strongly suggests
that a rotation of coordinates could simplify the integra-
tion. If we let 4 represent the angle between the line
u =a’ + b’x and the positive x-axis, then we can define
a new coordinate system (x’, #’) by the transformations

} (C-4)

x=x"cosd — u'sind
u=x"sinf + v cosé

as shown in Fig. C-2.

1

o0 o0 1
I'= exp| - ———————
2‘"\[?./«: ﬁ’h/(b’)hl p[ 20° [(b,)2 + 1] {
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x2
0| - 37 ] )

2

X
T

Now, recall that if a function ¢ (x, u) is to be integrated
over a region A and if we define the transformations

x=f(«, ) } (©5)

u=g(x,v)

then (Ref. 10)

[[s@naxau=[[st@ ey d

(C-6)
where |J| is the Jacobian
Y
o’ ou
|7] = det (C-7)
u o
o  ou

and the region B is the region which results from mapping
the region A through the transformations x = f (x’, v’) and
y = g(«’,v’). In our problem (see Fig. C-2)

B={(x,t): —0=2'=c0,u =}

where ¢ can be determined from the Law of Sines and the
fact that

6 = tan (b") (C-8)
Thus we have that
al
e ——— C9
T Vw1 (©9)

Using these results and the fact that for a rotation of coor-
dinates the Jacobian equals 1, we can express Eq. (C-3) as

() (B 0" + 1] = 2T (1= o)+ () [o* + (B)]) | du' e

(C-10)
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Now, if we interchange the order of integration, complete the square on the variable «’ in the exponent, and use the

properties of the gaussian density function, we obtain

(b'y
()2 e? + 1/.,
Now using the substitution
b2 +1
A (&) v (C-12)

) + 1

we obtain

A2
= exp| ——=|dx
V 277' a’ /y/(b')20241 p[ 2 ]

= erfc (Wﬁ)

Returning now to Eq. (C-2) with the substitutions for the

(C-13)
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(b')2+1

(') + o\ g0
e (1)
unprimed values of a and b, we have
ay2 )
I=1-2erfc| ——=—= C-14
erc(v2b202+l ( )
so that we arrive at the result
2| 27
I =/wé\Jrf(a+ bx)——%a—dx
—oo o
= exf (+> (C-15)
V2b%? +1
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Appendix D

Evaluation of E {|x+ « |3}
Let

y=|x+p

(D-1)
where x is a unit normal random variable (0 (0, 1)) and 4 is a constant. We wish to compute E {y?3}.

From Appendix A we found that the probability density function of y was given by

O e R A e w140 (D-2)

where U (y) is the unit step function. Then, the characteristic function of y (¢v (%)) is given by

¢y (o) = E {exp [iny]}
(y — n)?

1 f[= -
\/2_7rﬁ expl:— B ](cos(uy+zs1nmy)dy

-] 2
+ \/-1?7; /; exp [— —(g;—ﬁ)—] (cos wy + isinwy) dy (D-3)
From Erdelyi, et al. (Ref. 11), Eq. (D-3) can be expressed as

g e L] Gt - ﬁwiw)]

2
+ exp [ —ipa] erfc [—\2—@ (1 — o) ]} (D-4)

Since we now have the characteristic function, we can determine the moments of y by successive differentiation. Differ-
entiating once we obtain

aqbay‘w(“’)zi\/%exp[—%i}r (iu-z—w) exp[—%z-Fi/Lm]é;i:c[—'\,?_z(M‘*‘itb)]
g e[~ o Jote [ e 0] ©)

Differentiating again we have
0y (a)) _ —2iw __[.ﬁ
%?  yan P [ 2
2 — Qi — p? — 1 : ~ )
I ““"2 K )exp[—%+im]erfc[—£(“+iw)]

w2+2' . 2 ll)2 ~
+ ( t'umz 1) exp[—-———i,um]erfc[\'/—5 ]
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(D-6)
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Finally, a third differentiation yields

N TN

—m3—3ipm2+3m,u.2+3m+3i,u+'ip3 o? , ~ \/—2- )
{ exp| — 5 ~—ipo |erfe —2—"(#—%)]

+ 2
—w3+3'm2+3w2+3w"‘3' — ip? o’ 1 —V2
R e RIS
and, since
03 ® ,
= o
we have the result
E{y’) = E{|x+ p|%}
=(2+2)\/§ex L+ pet (L (B9)
7 —€Xp| — 75 . SANYS ]
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